Admission Apply Now 2024 Click here to know more
Admission Apply Now 2024 Click here to know more
ADMISSION ENQUIRY - 2024
Advanced Big Data Analytics
GANPAT UNIVERSITY |
||||||||||||||
FACULTY OF ENGINEERING & TECHNOLOGY |
||||||||||||||
Programme |
Bachelor of Technology |
Branch/Spec. |
Computer Science & Engineering (BDA) |
|||||||||||
Semester |
VII |
Version |
1.0.0.0 |
|||||||||||
Effective from Academic Year |
2022–23 |
Effective for the batch Admitted in |
June 2019 |
|||||||||||
Subject code |
2CSE711 |
Subject Name |
ADVANCED BIG DATA ANALYTICS |
|||||||||||
Teaching scheme |
Examination scheme (Marks) |
|||||||||||||
(Per week) |
Lecture (DT) |
Practical (Lab.) |
Total |
CE |
SEE |
Total |
||||||||
L |
TU |
P |
TW |
|||||||||||
Credit |
3 |
0 |
1 |
0 |
4 |
Theory |
40 |
60 |
100 |
|||||
Hours |
3 |
0 |
2 |
0 |
5 |
Practical |
30 |
20 |
50 |
|||||
Pre-requisites: |
||||||||||||||
Data Science & Analytics, Big Data Analytics, Database Management System, HDFS and MapReduce |
||||||||||||||
Learning Outcome: |
||||||||||||||
After successful completion of the course students will be able to:
|
||||||||||||||
Theory syllabus |
||||||||||||||
Unit |
Content |
Hrs |
||||||||||||
1 |
NOSQL Databases Types and importance of NoSQL Databases, MongoDB CRUD operations, Aggregation Framework, indexes |
15 |
||||||||||||
2 |
Processing stream data SCALA: What is Scala? Basic Operations, variable types, control structure, foreach loop, functions, procedures, array, higher order functions, Class in Scala, getters and setters, constructor, singletons, traits SPARK: Spark Components & its Architecture, Spark Deployment Modes, Spark Resilient Distributed Dataset (RDDs), RDD operations, transformations and actions, data loading and saving, Key-Value Pair RDDs, RDD Persistence, SPARK SQL, dataframes and datasets, JSON and Parquet file formats |
20 |
||||||||||||
3 |
Data Visualization tools and techniques Tableau: Data type, file type, tool type, show me menu, Type of data source supported by, how to connect different data sources, edit metadata, filter fields, filter data source, type of charts, filter data, data joining, data blending, extract data, adding filter data, apply filter on chart and data, number functions, string functions. Power BI: Components of Power BI, designing tables and reports, preparing dashboards |
10 |
||||||||||||
Practical content |
||||||||||||||
Practicals will be based on:
|
||||||||||||||
Text Books |
||||||||||||||
1 |
Spark: The Definitive Guide by Bill Chambers and Matei Zaharia |
|||||||||||||
2 |
MongoDB: The Definitive Guide by Shannon Bradshaw , Eoin Brazil |
|||||||||||||
1 |
Scala in depth by Joshua D. Suereth |
|||||||||||||
2 |
Tableau For Dummies by Molly Monsey and Paul Sochan |
|||||||||||||
3 |
Introducing Microsoft Power BI, Alberto Ferrari and Marco Russo |
|||||||||||||
Course Outcomes: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cos |
Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1 |
Understand several key big data technologies used for storage, analysis and manipulation of data. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO2 |
Recognize the key concepts of MongoDB, Scala and Spark |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO3 |
Solve business intelligence related queries using Data Visualization tool like tableau, PowerBI |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO4 |
Apply Advance concepts related to big data in projects/real life scenarios |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mapping of CO and PO:
|